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a b s t r a c t

Soil salinity and sodicity impose severe constrains to agriculture, especially in arid and semi-arid regions,

where good-quality water for irrigation is scarce. While detailed models have been proposed in the past to

describe the dynamics of salt and sodium in the soil, they typically require cumbersome calculations and

are not amenable to theoretical analysis. Here we present an analytical model for the dynamics of salinity

and sodicity in the root zone. We determine the dependence of steady-state salinity and sodicity levels on

irrigation water quality and derive the trajectories in the phase space. The only stationary solution the equa-

tions admit is a stable node. Through numerical integration and analysis of the eigenvalues of the derived

two-dimensional system of equations, the slower time scale associated with sodification is quantified with

respect to the faster time scale associated to salinization. The role of different cation exchange equations

(Gapon and Vanselow conventions) are shown to be practically the same with regard to the phase-space dy-

namics and the time scales. The results can be applied in controlling for low levels of salinity and sodicity,

and in planning remediation strategies that are timely and economical.

© 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

Soil salinity and sodicity impose stress on agricultural crops, re-

ducing yields when critical thresholds are surpassed [1,2]. While soil

salinity refers to high concentrations of salt in the soil, soil sodicity

is the condition in which sodium constitutes a large portion of over-

all cations, not necessarily accompanied by high salinity levels. In-

creased osmotic pressure of the soil water, which impedes its uptake

by the roots, and nutrient imbalances, which in turn lead to toxici-

ties and deficiencies, are the major causes for the adverse effects of

salinity and sodicity on plant growth [3]. Other detrimental factors

include poor physical soil conditions, like low permeability to air and

water, caused by clay swelling and dispersion, associated with a com-

plex interplay between sodicity and electrolyte concentration [4].

Irrigation with poor-quality water and insufficient leaching of

soils are major factors contributing to secondary salinization, or the

accumulation of salt in soils by means of human intervention. Ghas-

semi et al. [5] estimated that about 20% of irrigated land are salt-

affected, and nearly four million acres of farmland are lost to exces-

sive salt every year [6].

Detailed numerical models have been proposed to simulate the

dynamics of water and salt in the root zone [7,8]. However, they

demand solving Richards’ equation for the water flow and partial
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ifferential equations for the transport of chemical species. Thus,

hile being very detailed, they require cumbersome calculations

f long-term predictions are required, and the lack of analytical

olutions somewhat masks the relationships among governing

ariables. As a result, other simple approaches have been proposed:

ome analytical models are based on a balance equation for the soil

alt with a stochastic term for rain induced leaching events [9,10],

ut do not model explicitly soil water nor sodium; another account

olves balance equations of water and salt cations (sodium and

alcium) [11], but its solutions are strictly numerical. Partly with the

xception of the latter, these simple models do not analyze in detail

he interplay between cations in the soil complex and the solution,

s well as the nonlinear dynamics resulting from the thermodynamic

quilibrium of differently charged cations (e.g., Na+and Ca2+).

To investigate such dynamics, in this paper we present a simple

nalytical model of salinity and sodicity based on the balance equa-

ions for soil water and salt (sodium and calcium cations), coupled

o an equation for their chemical thermodynamic equilibrium. In de-

erministic conditions (i.e., no stochastic forcing), these equations are

menable to analysis. We derive here the trajectories in phase space,

he time scales for the dynamics, and the dependence of steady-state

alinity and sodicity levels on irrigation water quality. We also discuss

lternative choices of cation exchange equations, and their effects on

hase–space dynamics.

The paper is structured as follows. Section 2 develops a dynamical

quation for salt concentration in soil water, Section 3 then develops

dynamical equation for the fraction of sodium adsorbed in the soil,
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Table 1

Definition of all symbols used throughout this paper.

Symbol Units Description

C mmolc/L Electrolyte concentration

CEC mmolc/kg Cation exchange capacity

E – Equivalent fraction

ESP – Exchangeable sodium %

ESR – Exchangeable sodium ratio

ET mm/d Evapotranspiration rate

I mm/d Irrigation rate

J mmolc/m2/d Salt flux

Kg (mmolc/L)−1/2 Gapon selectivity coefficient

Ks L/d Saturated hydraulic conductivity

Kv (mmolc/L)−1/2 Vanselow selectivity coefficient

lf – Leaching fraction

M kg/m2 Dry soil mass

n – Soil porosity

q mmolc/m2 Salt content

s – Relative soil moisture

S� (mmolc/L, –) Stationary solution

sar (mmolc/L)1/2 Sodium adsorption ratio

w L/m2 Volumetric soil water

x – Normalized distance

Zr mm Rooting depth

i subscript – Irrigation water

s subscript – Soil water

x subscript – Exchange complex

� superscript – Steady state

0 subscript – Initial condition
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nd Section 4 investigates the coupled dynamics of the sodium frac-

ion and the salt concentration in phase space. Finally, we synthesize

ur results and present conclusions in Section 5. Table 1 shows the

efinition of all symbols defined throughout this paper.

. Coupled dynamics of water and salt balances

.1. Soil water balance

We begin by considering the water and salt balances in a unit area

f soil subject to irrigation. The balance equation for the relative soil

oisture s is [12]

Zr
ds

dt
= P(t) + I(t) − ET (s) − L(s) − Q(s), (1)

here Zr is the rooting soil depth and n is the dimensionless porosity.

he water inputs are the precipitation P and irrigation I, while water

eaves the system through evapotranspiration ET, deep percolation

and surface runoff Q. For simplicity, the water table is considered

o be deep with respect to the rooting zone, so the balance Eq. (1)

oes not show a water upflow term. However, contributions from the

round water can be easily included, as was done by [11].

In this paper we focus on the nonlinear dynamics of water and

alt, and the interactions between soil salinity and sodicity levels.

or simplicity we concentrate on the deterministic system governing

uch dynamics and therefore we exclude the temporal forcing. This

an be conceptualized by considering a typical dry season in a semi-

rid or arid region (negligible precipitation compared to irrigation,

= 0), where the relative soil moisture has achieved the steady state
� under a constant irrigation rate I and constant evapotranspiration

ate ET. In a stress-avoidance irrigation method, s� would be at the

oint of incipient stomatal closure, i.e., the relative soil moisture for

hich plant transpiration is reduced [13]. However, even a slight con-

entration of dissolved salts in irrigation water requires some amount

f overirrigation in order to guarantee the leaching of salts from the

oot zone. As a result, s� can be considered here to correspond to

value of soil moisture slightly above the so-called field capacity.

ith the above assumptions, surface runoff Q can also be considered
egligible, so that the balance Eq. (1) becomes

(s�) = I − ET. (2)

he percolation function is modeled by the simple function [14]

(s) = Ks · sc, (3)

here the saturated hydraulic conductivity Ks and the parameter c in

he equation above depend on the soil properties [12]. Solving Eqs. (2)

nd (3), the steady-state soil moisture is

� =
(

I − ET

Ks

)1/c

. (4)

n what follows we refer to the water volume per unit area w� = nZrs�.

ote that when Zr is given in millimeters, the units of w� are in L/m2.

.2. Salt balance

The salt content qs in the soil water is given by the number of

oles of charge (or equivalents) of cations in a squared meter. The

alance equation for qs is

dqs

dt
= Jin − Jout, (5)

here the input flux of salt Jin to the system is through the irriga-

ion water of concentration Ci (in millimoles of charge per liter, or

molc/L), while salt can leave the system through the percolation of

oil water to lower soil depths, represented by the output flux Jout.

hese fluxes can be written as

in = ICi (6a)

out = L�C, (6b)

here L� is shorthand for L(s�), and C = qs/w� is the salt concen-

ration (in mmolc/L), also called electrolyte concentration. Note

hat mmolc/L translates into the SI unit molc/m3, without the need

f any conversion factor. We emphasize that qs refers only to the

alt dissolved in water; the salt bound to the soil particles will be

iscussed in Section 3.

Because of the assumption of no exfiltration from the aquifer to

he rooting zone, we rule out an interesting feedback of salt transport

etween these two regions, mediated by percolation and exfiltration.

or an account on this phenomenon, see [11]. A constant rate of salt

ry deposition influx Jdry can be incorporated into the model, by sim-

ly changing the salt input flux (6a) to Jin = ICi + Jdry.

Dividing Eq. (5) by w�, an equation for the salt concentration C is

asily obtained as

dC

dt
= ICi

w�
− L�

w�
C. (7)

his linear ordinary differential equation is the main equation of this

ection. It describes the evolution of soil salinity, once the input of

alt from irrigation and the rates of irrigation and percolation have

een determined.

Assuming constant irrigation parameters I and Ci, Eq. (7) can be

olved as

(t) = C� + (C0 − C�)e
− t

τC , (8)

here

� = Ci

L�/I
τC = w�

L�
, (9)

0 is the concentration at t = 0, and τ C is the typical time scale of

onvergence to the equilibrium solution. The quantity L�/I is the por-

ion of irrigation water that infiltrates past the root zone, and it is

alled leaching fraction (lf) [2], so we can rewrite the steady-state

oncentration as C� = C /lf. Clearly lf � 1, which means that C� ≥ C .
i i
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Fig. 1. Panel (a): Evolution of soil water concentration for various values of irriga-

tion rate I (in mm/d), with C0 = 2 mmolc/L and Ci = 20 mmolc/L. Panel (b): Steady-

state salinity C� (mmolc/L) in the parameter space (lf,Ci). Parameters: n = 0.43,

Zr = 300 mm, c = 12.8, Ks = 800 mm/d, ET = 5 mm/d.
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Fig. 1 (a) shows the evolution of the soil water concentration for

various values of irrigation rate, illustrating the role of lf on the

steady-state concentration level C� and on the typical time scale τ C.

Fig. 1(b) shows the steady-state concentration C� in the parameter

space (lf,Ci), where the divisions depict the qualitative thresholds

proposed by Maas [1] to classify a plant’s salt tolerance. As expected,

higher leaching fraction values (that translate into higher irrigation

rates) result in decreased steady-state salinity levels. The dashed line

indicates the leaching requirement [15] curve for moderately sensi-

tive crops, i.e., it shows the minimal values of the leaching fraction

needed in order to maintain salinity levels suitable for this kind of

crops.

According to Eq. (9), as long as the leaching of salts is adequate,

one can make use of saline water for irrigation without risking cross-

ing a critical threshold of soil water salinity. The more saline the ir-

rigation water, the higher the leaching fraction has to be in order to

curb salt concentration below critical values. Furthermore, a relative

low percolation rate L means not only that the steady-state concen-

tration will be high, but also that the salt accumulation process will

be slow, as described by the typical time scale τ C.

A specific electrical conductance κ (or simply electrical conduc-

tivity) of 4 dS/m of a saturated soil extract is a commonly accepted

threshold above which a soil is defined as saline [15]. This threshold

is converted to C = 40 mmolc/L in this paper, according to the com-

mon rule of thumb C [mmolc/L] = 10κ [dS/m].

We will now study the salt cation composition and the role of irri-

gation water quality on the processes of salinization and sodification

of soils.

3. Sodicity dynamics

Having described how the total salinity evolves via Eq. (8), the

next step is to describe the partitioning between the cations in the

soil solution and in the adsorbed phase, as a function of the proper-

ties of the soil solution and thus of the quality of irrigation water.

The main cations found in saline soils are Na+
, Ca2+, Mg2+, and, to

a lesser degree, K+. All of them are involved in an intricate dynamical

process of adsorption and desorption, whose mathematical model-

ing would be too cumbersome to our efforts of working with a sim-

ple model for soil salinity and sodicity. In order to be able to proceed
nalytically, we will assume that Na+ and Ca2+ are the only cations

aking up the salt content. The exchange of Na+ and Ca2+ is an epit-

me of binary exchange between monovalent and bivalent cations,

hose educational and practical value has been recognized in almost

ll literature concerning exchange reactions in saline and sodic soils.

oreover, the equation for the sodium adsorption ratio [Eq. (17)], in-

roduced in Subsection 3.1, allows us to think of the salt cations as be-

ng partitioned into sodium and other bivalent cations (calcium and

agnesium). Thus, when we refer to calcium in this paper, one can

lso interpret it as a joint description of Ca2+ and Mg2+.

Na+ and Ca2+ cations can be either dissolved in soil water, or

ound to the soil. The salt content in the soil water qs, defined in

ection 2, can be written as

s = qNa
s + qCa

s . (10)

ach cation accounts for a fraction of the total cation charge in the

oil water. This is called the equivalent fraction E, given by

Na
s = qNa

s

qs
, ECa

s = qCa
s

qs
, (11)

here, of course, ENa
s + ECa

s = 1. Using the equations above, and the

lready defined salt concentration in the soil water C = qs/w�, the

otal charge of Na+ and Ca2+ in the soil water can be written as

Na
s = Cw�ENa

s (12a)

Ca
s = Cw�ECa

s . (12b)

Besides being dissolved in soil water, the sodium and calcium

ations can be adsorbed on soil particles, whose surfaces have neg-

tive charge. The adsorbed cations can be replaced by cations in

he soil water solution, and therefore are called readily exchange-

ble cations. Together with the soil particles they constitute the ex-

hange complex. The Cation Exchange Capacity (cec) is a measure of

he maximum quantity of adsorbed cation charge in a unit mass of

oil [16], and can be written as the sum

ec = qx

M
= qNa

x + qCa
x

M
, (13)

here the subscript x denotes cations in the exchange complex, and

is the mass of dry soil in a unit area of depth Zr. Using the same

oncept of equivalent fractions as in Eq. (11), we can write for the salt

uantities in the exchange complex (in mmolc/m2)

Na
x = cec · M · ENa

x (14a)

Ca
x = cec · M · ECa

x . (14b)

The equivalent fraction of sodium in the exchange complex ENa
x ,

hen expressed as a percentage, is commonly known as the Ex-

hangeable Sodium Percentage (esp). Different levels of sodicity haz-

rd can be defined for various ranges of esp [2]: none or slight (esp <

5%); light to moderate (15% < esp < 30%); moderate to high (30% <

sp < 50%); high to very high (50% < esp < 70%); and extremely high

esp > 70%). Throughout this paper, by sodicity level we mean the

equivalent fraction of sodium ENa in the various phases (soil water,

rrigation water and exchange complex).

.1. The exchange isotherm

In order to model the dynamics of sodium in the soil we need

means to describe the replacement of one readily exchangeable

ation by another cation in the soil water. Adsorption reactions of

eadily exchangeable cations have typical time scales of minutes to

ours [16,17], while, as it will be shown, the accumulation or de-

letion of sodium in the soil have a typical time scale of weeks to

onths. Because of these widely different time scales, we will con-

ider the chemical balance between soil water and exchange com-

lex to be practically instantaneous, and therefore the cations will be

ssumed to be in thermodynamic equilibrium at any given time.
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Such an equilibrium is described by an exchange isotherm, i.e., an

quation of the kind

Na
s = gs

(
C, ENa

x

)
, (15)

hat relates the equivalent fraction of sodium in the soil water with

hat in the exchange complex, at a fixed temperature and pressure,

nd in equilibrium conditions [16,18]. The exchange isotherm can be

btained from the Gapon equation [19], widely used in the study of

oil salinization,

sr = Kg sar, (16)

here, Kg is the Gapon selectivity coefficient, and the Exchangeable

odium Ratio (esr) and the Sodium Adsorption Ratio (sar) are de-

ned as

sr = ENa
x

ECa
x

= esp/100

1 − esp/100
(17a)

ar = [Na]√
[Ca]+[Mg]

2

, (17b)

n which the square brackets denote cation concentration in the soil

ater, in millimoles of charge per liter. Implicit in the definition of

he sar, in Eq. (17b), is that calcium and magnesium are chemically

ndistinguishable with regard to cation exchange [20]. This justifies

ur approach of grouping both cations, and the sum of the concen-

rations [Ca] + [Mg] in Eq. (17b) is substituted simply by [Ca].

The linear relation between esr and sar was established empir-

cally for the range 0 < sar < 25 by the United States Salinity Lab-

ratory [15], with the Gapon selectivity coefficient given by Kg =
.01475 (mmolc/L)−1/2. This value for Kg represents a mean behavior

f 59 soil samples of varied origins1. Note, however, that exchange

roperties vary considerably between soils. For example, the experi-

ental determination of Kg for five soil types [21,22] found it to range

etween 0.00866 and 0.01740 (mmolc/L)−1/2.

Appendix A combines Eqs. (17) and (16) in order to derive the

ought exchange isotherm

Na
x = gx

(
C, ENa

s

)
=

(
1 +

√
1 − ENa

s

2C

1

KgENa
s

)−1

, (18)

hich describes the dependence of ENa
x on ENa

s and C.

The inverse function of Eq. (18) will also be useful in the next sub-

ection,

Na
s = gs

(
C, ENa

x

)
= 2

1 +
√

1 + 8K2
g C

(
1

ENa
x

− 1

)2
. (19)

Note that there are alternative descriptions of the cation exchange

eaction of Na+ and Ca2+ (see [16], Eq. (9.14)), and each inter-

retation of the process yields different versions of the exchange

sotherm. Appendix B shows the detailed derivation of exchange reac-

ion equations based on the “Vanselow convention”, in contrast with

he “Gapon convention”.

In the next subsection we will base the derivation of a dynamical

quation for soil sodicity on the Gapon exchange isotherm.
1 Figure 9 in [15, p. 27] reports a linear relation with a slight vertical offset: esr =
0.0126 + 0.01475 sar. However, it seems that the vertical offset is wrong by a factor

f approximately three, and this widely used relation should actually read as esr =
0.0425 + 0.01475 sar.

s

I

b

.2. Sodicity equation

We will derive now an equation to describe the dynamics of the

quivalent fraction ENa
x , that, together with Eq. (7) for the concen-

ration, will constitute the coupled equations for soil salinity and

odicity.

The balance equation of total sodium in the soil is

dqNa

dt
= JNa

in − JNa
out. (20)

he input flux JNa
in

of sodium to the soil water solution, due only to

rrigation, reads

Na
in = JinENa

i = CiIE
Na
i , (21)

here ENa
i

is the equivalent fraction of sodium in the irrigation water.

onversely, the output flux JNa
out of sodium from the soil water, due to

ercolation of the solution to deeper soil layers, reads

Na
out = JoutE

Na
s = CL�ENa

s . (22)

Using the fact that the total sodium content in the soil qNa is the

um of the sodium in the soil solution and in the exchange complex,

q. (20) can be written as

dqNa
s

dt
+ dqNa

x

dt
= CiIE

Na
i − CL�ENa

s . (23)

ubstituting Eqs. (12a) and (14a) into Eq. (23) and using the chain

ule, gives

� C
dENa

s

dt
+ w� ENa

s

dC

dt
+ cec M

dENa
x

dt
= Ci IENa

i − CL�ENa
s . (24)

he equation above has three dynamical variables: the total salt con-

entration in the soil water C, and the equivalent fractions ENa
s and

Na
x . In order to reduce Eq. (24) to only two variables, ENa

x and C, we

an use the derived function ENa
s = gs(C, ENa

x ) shown in Eq. (19). Rear-

anging the terms, and calling ENa
x as E, Eq. (24) becomes

dE

dt
= F1 − F2(C, E) − F3(C)[F4(C, E) + F5(C, E)]

F6 + F7(C, E)
, (25)

here

1 = I Ci Ei (26a)

2(C, E) = L� C gs(C, E) (26b)

3(C) = dC

dt
(26c)

4(C, E) = w� gs(C, E) (26d)

5(C, E) = w� C
∂gs(C, E)

∂C
(26e)

6 = cec M (26f)

7(C, E) = w� C
∂gs(C, E)

∂E
. (26g)

Note that F3(C) = dC/dt was already found in Eq. (7), while the

artial derivatives of gs in F5 and F7 follow from Eq. (19),

∂gs(C, E)

∂C
= −2(1 − E)2Kg g3

s

E2(2 − gs)
(27a)

∂gs(C, E)

∂E
= 4C(1 − E)Kg g3

s

E3(2 − gs)
. (27b)

A Vanselow-based version of Eq. (25) can be achieved simply by

ubstituting gs by vs [Eq. (B.9b)], and its partial derivatives Eqs. (B.10).

n what follows, Eq. (25) is understood to be formed by the Gapon-

ased function gs unless specified otherwise.
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I = 10 (long-dashed lines) and I = 20 (short-dashed lines). Other parameters: same as

in Fig. 1.
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4. Study of the dynamical system

From Eqs. (1), (7) and (25) we have a dynamical system of three

variables: soil moisture s, salt concentration in the soil water C, and

equivalent fraction of sodium in the exchange complex E. However,

assuming constant soil moisture, we are left with two dynamical

equations only, for C and E. This is justified by the fact that the soil

moisture reaches its steady-state value s� in a time scale of days,

while salinization and sodification processes occur in the order of a

few weeks to months.

This choice of conditions has two clear advantages. First, it leaves

us to study the dynamics of a deterministic two-dimensional sys-

tem of ordinary differential equations. This analysis highlights the

one-way effect of the soil water salt concentration C on the dynam-

ics of E, yielding typical sodification time scales easy to calculate

(Section 4.3).

The drawbacks of this choice are twofold. In case of time-varying

irrigation and evapotranspiration rates, or when precipitation is

present, the water content in the soil is obviously not fixed, and an

additional dynamical equation for s should is required to modulate C

and E. In addition, salinity and sodicity can themselves modulate the

water dynamics in the soil by changing the infiltration rate and hy-

draulic conductivity [23–25]. These issues will be addressed in future

research, where the three-variable system s, C, E will be considered.

To sum up, eliminating the dynamic variable s, the Eqs. (25) and

(7) form the two-dimensional dynamical system

dC

dt
= h1(C). (28a)

dE

dt
= h2(C, E) (28b)

Note that any point (C, E) in the phase space can be readily con-

verted into the equivalent fractions ECa
x , ENa

s and ECa
s using the fact

that ENa + ECa = 1, the Gapon Eq. (A.2) and its solution Eq. (19).

4.1. Stationary solution

The system of Eq. (28) admits one stationary solution S� = (C�, E�).

C� was already found in Eq. (9) as

� = Ci

L�/I
. (29)

In order to find E�, we could solve h2(C
�, E) = 0. However, a much

easier task is to solve the balance Eq. (23) in steady-state conditions,

where the time derivatives vanish and C = C�:

iIE
Na
i = C�L�(ENa

s )�. (30)

Using Eq. (29), the steady-state equivalent fraction of sodium in the

soil water then equals the equivalent fraction of sodium in the irriga-

tion water, i.e.
(
ENa

s

)� = ENa
i

. In other words, the sodicity level of soil

water equilibrates with that of irrigation water. Finally, using Eq. (18),

one obtains

E� = gx

(
C�,

(
ENa

s

)�)
=

(
1 +

√
L�(1 − ENa

i
)

2ICi

1

KgENa
i

)−1

. (31)

The physical interpretation of the result above is that given the

steady-state salinity C� and the sodicity of the irrigation water ENa
i

,

one can calculate the steady-state soil sodicity E� simply by using the

exchange isotherm (18).

Fig. 2(a) shows E� as a function of the irrigation parameters Ci

and ENa
i

. The dashed lines indicate the sodicity hazard boundaries

discussed in Section 3. For constant sodium fractions, higher irriga-

tion water concentrations result in higher values of esp, as suggested

previously in Fig. A.5.
Fig. 2 (b) shows the dependence of the sodicity hazard boundaries

n irrigation rate. Higher irrigation rates translate into reduced sod-

city hazard, for fixed Ci and ENa
i

.

Although there is no largely accepted definition of a sodic soil [4],

n the following analysis we will use the value E = 0.15 (esp = 15%)

to separate sodic from non-sodic soils [15].

.2. Linear stability analysis

The linear stability of S� is determined by the eigenvalues of the

acobian of Eq. (28), calculated at S�. The Jacobian reads

=
(

∂h1

∂C
0

∂h2

∂C
∂h2

∂E

)
. (32)

he null element in the Jacobian results from the fact that the dynam-

cs of C does not depend on E, as can be seen in Eq. (7). Therefore, the

wo eigenvalues σ 1, σ 2 are clearly the diagonal elements

1 = ∂h1

∂C

∣∣∣∣
C�

, σ2 = ∂h2

∂E

∣∣∣∣
S�

. (33)

he solution S� will be linearly stable if the real part of both eigen-

alues is negative. The first eigenvalue is always negative,

1 = − L�

w�
= − 1

τC

, (34)

hile the analytical form of σ 2 is too cumbersome and will not be

resented here. We could not determine analytically the region in the

arameter space where σ 2 < 0, however, numerical simulations, to-

ether with the fact that E is bounded (0 ≤ E ≤ 1), suggest that S� is

n fact a stable fixed point (a stable node). Any oscillations are ruled

ut because σ 1 is real valued.

.3. Phase-space analysis

It does not seem possible to find an analytical solution E(t) for

q. (28b), as it was done for C(t) [Eq. (8)]. Thus alternatively numerical

olutions will be presented, using the standard Runge–Kutta method.
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Fig. 3. Phase–space dynamics of Eq. (28). The stars indicate the steady-state solu-

tions S� , the arrows denote the vector field of Eq. (28), the solid black vertical line

and solid black curves denote the nullclines of Eq. (28a) and (28b), respectively, and

the brown dot–dashed orbits were calculated numerically, with initial conditions

C0 = 60 mmolc/L and E0 = 0.17. Each panel was calculated for a pair of the parameters

(Ci, Ei): panel (a): (15,0.9); panel (b): (40,0.8); panel (c): (15,0.45); panel (d): (40,0.4).

For all panels I = 10 mm/d, cec = 100 mmolc/kg, M = 450 kg/m2, and other parame-

ters are as in Fig. 1.

s

s

w

E

s

r

o

E

i

s

t

(

l

c

o

i

e

a

t

t

h

s

x

T

a

l

g

t

[

s

b

n

σ
i

s

t

0.00

0.25

0.50

0.75

1.00
(a)

xE

xC

(b)

0 50 100 150 200 250

t (d)

0.00

0.25

0.50

0.75
(c)

0 50 100 150 200 250 300

t (d)

(d)

0 20 40 60 80 100
Ci (mmolc /L)

0.0

0.2

0.4

0.6

0.8

1.0

Ei

a
b

c
d

(e)

σ2/σ1= 0.10

σ2/σ1= 0.20

σ2/σ1= 0.30

σ2 /σ1=
0.40

σ2
/σ1=

0.50

Fig. 4. Panels (a)–(d): the normalized distances xC (dark curves) and xE (light dashed

curves) as a function of time, for the dot–dashed numerical orbits also shown in Fig. 3.

Panel (e): the ratio of eigenvalues σ 2/σ 1 in the parameter space (Ci, Ei). The white

circles correspond to the values of Ci and Ei in the four panels of Fig. 3. For all panels

I = 10 mm/d, cec = 100 mmolc/kg, M = 450 kg/m2, and other parameters are as in

Fig. 1.

Table 2

Comparison table of the half-life ratios and eigenvalues

ratios shown in Eq. (36), for the four cases a–d discussed

in the top panels of Fig. 4.

Measure Case

(a) (b) (c) (d)

t1/2(C)/t1/2(E) 0.060 0.201 0.188 0.366

σ 2/σ 1 0.049 0.180 0.234 0.366
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We divide the phase space in four quadrants, each representing a

oil type: normal soil, C < 40, E < 0.15; saline soil, C > 40, E < 0.15;

odic soil, C < 40, E > 0.15; and saline–sodic soil, C > 40, E > 0.15,

here C is in mmolc/L.

Fig. 3 shows in gray streamplots of the vector field defined by

q. (28), for four pairs of parameters (Ci, Ei): each places the steady-

tate solution S� = (C�, E�), marked with a star, in a different quad-

ant. The vertical solid black lines denote the nullcline of Eq. (28a),

r dC/dt = 0, while the solid black curves denote the nullcline of

q. (28b), i.e. dE/dt = 0. The graphic interpretation of the nullclines

s that orbits in the phase space will move to the right (left) when the

ystem is to the left (right) of the vertical solid black line. Likewise,

he orbits move upwards (downwards) when the system is below

above) the solid black curve. For each of the four panels, we calcu-

ated numerically the trajectory in phase space of an orbit with initial

onditions C0 = 60 mmolc/L and E0 = 0.17, shown by the dot–dashed

rbits.

The dynamics leading to the steady-state S�, defined by the meet-

ng point of the nullclines, varies greatly depending on the param-

ters. In Fig. 3(d), for instance, the dot–dashed orbit indicates that

change in E entails an accompanying change in C, while in Fig. 3(a)

he dynamics is such that first C reaches its steady-state value C�, and

hen the orbit approaches S� by moving along the vertical nullcline

1 = 0.

The temporal dynamics of the four simulated orbits in Fig. 3 is pre-

ented in the top panels of Fig. 4, in terms of the normalized distances

C(t) =
∣∣∣∣C(t) − C�

C0 − C�

∣∣∣∣, xE(t) =
∣∣∣∣E(t) − E�

E0 − E�

∣∣∣∣. (35)

he normalized distances equal 1 at t = 0 and go to zero as the vari-

bles C, E approach their steady-state values. The full dark and dashed

ight curves represent xC and xE, respectively. We find that E always

oes to its steady-state value over longer time scales than C, where

he slowest convergence time scale is associated with a sodic soil

Fig. 4(a)], the fastest with a saline soil [Fig. 4(d)], and saline-sodic

oil and normal soil (panels (b) and (c), respectively) have compara-

le time-scales.

A more precise evaluation of the time scales involved in the dy-

amics of C and E can be achieved by studying the eigenvalues σ 1 and

2. Eq. (34) shows the direct relation between σ 1 and the character-

stic time scale τ C. Because Eq. (28a) for C is linear, τ C is a true mea-

ure of the time scale of the dynamics of C, independently of whether

he initial condition C is close or far from steady-state C�. However,
0
ince Eq. (28b) for E is nonlinear, the eigenvalue σ 2 gives information

n the characteristic time scale τE = −1/σ2 only in the vicinity of S�.

Fig. 4 (e) shows the ratio σ 2/σ 1 in the parameter space comprised

f the irrigation parameters (Ci, Ei). A ratio smaller than 1 means that

E > τ C, that is, in the vicinity of S�, it takes longer for E to converge

o E� than for C to converge to C�. Four points are labeled from a to

, corresponding to the steady-state solutions in the four panels in

ig. 3. Points b and c have their ratio σ 2/σ 1 close to 0.2, which means

hat for these two cases E(t) approaches the steady-state about five

imes slower than C(t).

One can fit an exponential curve to E(t) in order to retrieve an ap-

roximate time scale of the dynamics, and check whether it conforms

o τ E. An easier method is to calculate the ratio of the half-lives t1/2

f C(t) and E(t), i.e., the time when the normalized distances xC and xE

ave decayed to 0.5, and compare it to the ratio of the two eigenval-

es. In the vicinity of the steady-state we expect to find that

t1/2(C)

t1/2(E)
� σ2

σ1

. (36)

Table 2 compares both ratios for the four cases a–d shown in Fig. 4,

hose initial condition was not in the vicinity of the steady state. Be-

ides the coincidental excellent agreement in case d, the other cases

ave their ratios differing up to about 20%. This means that σ 2 is able

o provide rough estimates of typical time scales of soil salinization,

odification, as well as their reclamation, even though it is strictly

alid only in the phase space near S�.

In Appendix C we compare both the Gapon and Vanselow ap-

roaches with regard to phase–space dynamics and typical time

cales of convergence.
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Fig. A5. (a) The nonlinear relationship between the sodium adsorption ratio (sar)

and the exchangeable sodium percentage (esp), as described by the Gapon convention

(Eq. (A.1) in dark blue) and by the Vanselow convention (Eq. (B.8) in light blue). The

black dashed line denotes the identity sar = esp. (b): Exchange isotherm defined by

the Gapon Eq. (A.2) (in dark blue) and by the Vanselow Eq. (B.7) (in light blue), for two

salt concentration values: 50 and 300 mmolc/L. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article).
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5. Conclusions

We presented here a simple system of differential equations to

describe the dynamics of soil salinity and sodicity.

One main result is the determination of time scales for the con-

vergence of C and E to their steady-state values. The time scale τ C

associated with the dynamics of soil salinity is a function only of the

ratio between the soil water content w� and the percolation rate L�:

higher irrigation rates imply higher percolation rates, which in turn

mean shorter convergence times τ C. We could also establish that the

eigenvalue σ 2, associated with the dynamics of E in the vicinity of

the steady state E�, gives a rough estimate of convergence times of

soil sodicity, even when initial conditions are far from E�.

The phase portraits in Fig. 3 show the different kinds of trajecto-

ries prescribed by the system’s equations. One can control irrigation

parameters Ci, Ei and I when managing salinity and sodicity, so orbits

stay in desired boundaries in the phase space, or so they evolve in

a timely manner. For instance, when reclaiming a sodic soil, a judi-

cious time-dependent addition of calcium cations to irrigation water

can minimize reclamation times while keeping calcium additives in

amounts that are economical.

We also investigated in Appendix C the effects of different choices

of exchange reaction equations on the dynamics of C and E and

steady-state solutions. We found that the Gapon and Vanselow equa-

tions give very similar results with regard to the location of the steady

state in the phase space, to the orbit leading to the steady state, and

to the typical times associated with convergence of E.

Some of the approximating assumptions here can be refined, in or-

der to produce a more realistic model. Salinity and sodicity levels can

influence greatly hydraulic conductivity and infiltration rates [25]. By

introducing a dependence of Ks on C and E (e.g. [26,27]) this effect

can be included by allowing the soil water w to become a dynamical

variable, with its own equation coupled to that of C and E. This would

also allow us to investigate the effect of various irrigation strategies

(e.g., micro-irrigation, traditional irrigation) on salt leaching and on

avoiding crop water stress.

A further modification could be the introduction of precipitation

by a stochastic process with seasonally varying parameters, to study

the role of off-growing-season rain events in leaching salts, as well

as long-term climatic effects on soil salinity and sodicity. Finally,

this root zone averaged model presented here can be coupled to the

ground water, in order to allow for the capillary rise of saline water

from deeper layers, which in some areas is a major contributing fac-

tor in secondary salinization. These extensions will be addressed in

future studies.
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Appendix A. Expressions derived from the Gapon equation

By manipulating the Gapon Eq. (16) one can derive common ex-

pressions found in the literature of soil salinity and sodicity.

First, substituting Eq. (17a) into Eq. (16) yields

sar = 1

Kg

esp/100

1 − esp/100
. (A.1)
ig. A.5(a) shows in dark blue a plot of Eq. (A.1), and the black dashed

ine represents the curve sar = esp. The numerical value of esp and

ar is approximately equal for esp < 40, which justifies the common

interchangeability of the terms in discussions on soil sodicity. How-

ever, note that sar diverges when esp → 100%.

An equation for the equivalent fractions is obtained by substi-

tuting Eq. (17) into Eq. (16), and using [Na] = CENa
s and [Ca] = C(1 −

Na
s ):

ENa
x

1 − ENa
x

= Kg

√
2C

ENa
s√

1 − ENa
s

. (A.2)

q. (A.2) solved for ENa
x finally yields

Na
x = gx(C, ENa

s )

=
(

1 +
√

1 − ENa
s

2C

1

KgENa
s

)−1

. (A.3)

q. (A.3) is the exchange isotherm, which describes the dependence

f ENa
x on ENa

s and C. It is plotted in dark blue in Fig. A.5(b), for two soil

ater concentration values. Higher electrolyte concentrations result

n higher sodium equivalent fractions in the exchange complex, for

he whole range of ENa
s .

ppendix B. Gapon and Vanselow conventions

The discussion below is based on a paper by Sposito [28], to which

he reader is referred for a more detailed analysis.

The Gapon and the Vanselow conventions differ in how they

hoose to account for the exchange reactants. The Vanselow conven-

ion chooses the cations Na+ and Ca2+ to react in molar amounts,

eading to the exchange reaction

aX2 + 2Na+ = Ca2+ + 2NaX, (B.1)

http://dx.doi.org/10.13039/100000001
http://dx.doi.org/10.13039/100006206
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ries. Parameters: Ci = 40 mmolc/L, Ei = 0.40, I = 10 mm/d, cec = 100 mmolc/kg, M =
450 kg/m2, and other parameters as in Fig. 1.
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here the exchanger X has charge 1−. Conversely, the Gapon conven-

ion chooses the reaction to be in moles of charge, giving

Ca1/2X + 2Na+ = Ca2+ + 2NaX. (B.2)

he notation Ca1/2X should be understood as one mole of charge of

alcium adsorbed to one mole of charge of the exchanger. Both con-

entions are equal macroscopically with regard to mass and charge

onservation, but in the microscopic level, there is no correspondent

o Ca1/2X, because there cannot be half a Ca2+ ion. So in this respect

q. (B.1) should be preferred. Each convention prescribes different

quations for the selectivity coefficients of the reaction:

apon : Kg = [Ca2+]1/2ENa
x

[Na+]E
Ca1/2

x

(B.3a)

anselow : Kv = [Ca2+]1/2χNa
x

[Na+](χCa
x )1/2

, (B.3b)

here the square brackets denote molar concentration of the ion in

he solution, E is the equivalent fraction, and χ is the mole fraction.

n this paper, the quantity E
Ca1/2
x is written simply as ECa

x .

Substituting

Ca2+] = CECa
s

2
, [Na+] = CENa

s (B.4)

nto Eq. (B.3a) and rearranging the terms, one arrives at the Gapon

q. (A.2).

Sposito discusses the thermodynamic assumptions and impli-

ations related to each convention, and gives a corrected form of

q. (A.2), derived from the Vanselow Eq. (B.3b). Using the fact that

he molar fractions read

Na
x = [NaX]

[NaX] + [CaX2]
, χCa

x = [CaX2]

[NaX] + [CaX2]
(B.5)

nd that the molar concentrations in the exchange complex read

NaX] = cec ENa
x , [CaX2] = cec ECa

x

2
, (B.6)

ne can substitute Eqs. (B.5) and (B.6) into Eq. (B.3b), to achieve, after

ome algebra, the Vanselow equation

ENa
x√

1 −
(
ENa

x

)2
= Kv

2

√
2C

ENa
s√

1 − ENa
s

. (B.7)

he Vanselow selectivity coefficient Kv was calculated [29] for the

ame 59 soil samples reported by the United States Salinity Labora-

ory [15] as Kv = 0.02105. Note that Oster and Sposito [29] present

different version of Eq. (B.7), whose selectivity coefficient equals

7.5. Kv as reported in this paper reads Kv = 1/47.5.

Substituting ENa
x = esr/(1 + esr) into the left-hand side of

q. (B.7), and writing its right-hand side as Kv sar/2, leads to

ar = 2

Kv

esp/100√
1 − (esp/100)

2
, (B.8)

hich is plotted in light blue in Fig. A.5(a), alongside the dark

lue curve, representing Eq. (A.1). For the whole range of esp, the

anselow-derived relation above is closer to the identity sar = esp

han the Gapon-derived relation.

As discussed by Oster and Sposito [29] and attested by Fig. A.5, the

mpirical Gapon equation and the Vanselow equation are effectively

ndistinguishable in an esp range of practical significance.

Solving Eq. (B.7) for ENa
x and ENa

s yields

Na
x = vx(C, ENa

s )

=
[

1 + 2(1 − ENa
s )(

Na
)2

]−1/2

(B.9a)

C Es Kv v
Na
s = vs(C, ENa

x )

= 2

1 +
√

1 + 2K2
v C

(
1 − 1

(ENa
x )2

) . (B.9b)

here vx gives a different exchange isotherm than gx. The Vanselow

xchange isotherm vx is plotted in light blue in Fig. A.5(b), alongside

x in dark blue.

The dynamical equation for the equivalent fraction of sodium in

he exchange complex ENa
x (also called here simply E) can be based

n the Vanselow interpretation instead of Gapon’s, as was done in

ection. 3. We can do so simply by substituting gs(C, E) for vs(C, E)

n Eq. (26), where the partial derivatives now read

∂vs(C, E)

∂C
= − (1 − 1

E2 )K2
v v3

s

2(2 − vs)
(B.10a)

∂vs(C, E)

∂E
= − CK2

v v3
s

E3(2 − vs)
. (B.10b)

ppendix C. Effect of exchange reaction convention on dynamics

We investigate here the role of Gapon’s and Vanselow’s conven-

ions on the coupled dynamics of soil salinity and sodicity. Fig. C.6

hows two trajectories in the phase space (C, E), both beginning at

20.0, 0.30), i.e., in a sodic soil state. The irrigation rate is I = 10 mm/d,

nd irrigation water quality is Ci = 40 mmolc/L and Ei = 0.40, which

ccording to Figs. 1 and 2 places the steady state in the quadrant cor-

esponding to a saline soil. The darker trajectory marked with G was

alculated using the Gapon-derived function gs and its partial deriva-

ives in Eq. (25). Likewise, the lighter trajectory marked with V used

he Vanselow-derived function vs and its partial derivatives.

Most markedly, the steady state of trajectories G and V, indi-

ated with a circle and a diamond, respectively, have the same salin-

ty level C�, but their sodicity level E� do not coincide. This stems

rom the fact that the dynamics of C, governed by Eq. (7), is unaf-

ected by our choice of interpretation of the exchange reaction, and

hat the exchange isotherms gx and vx do prescribe different values

f E for same salt concentrations and same values of ENa
s , as shown

n Fig. A.5(b).

The inset in Fig. C.6 shows the evolution of E in time for both

rajectories G and V. Although the two curves level off at different

alues of E, they do so in similar time scales. The time it takes for G

nd V to cross the sodicity threshold E = 0.15, marked by a dotted

ine in the inset, is 61 and 51 days, respectively. From this example

nd other cases not shown here, we conclude that both Gapon and

anselow conventions yield dynamical results that are qualitatively

ery similar.
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